Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Single-base-resolution methylomes of Populus trichocarpa reveal the association between DNA methylation and drought stress.

Identifieur interne : 002051 ( Main/Exploration ); précédent : 002050; suivant : 002052

Single-base-resolution methylomes of Populus trichocarpa reveal the association between DNA methylation and drought stress.

Auteurs : Dan Liang ; Zhoujia Zhang ; Honglong Wu ; Chunyu Huang ; Peng Shuai ; Chu-Yu Ye ; Sha Tang ; Yunjie Wang ; Ling Yang ; Jun Wang ; Weilun Yin ; Xinli Xia

Source :

RBID : pubmed:25080211

Descripteurs français

English descriptors

Abstract

BACKGROUND

DNA methylation is an important biological form of epigenetic modification, playing key roles in plant development and environmental responses.

RESULTS

In this study, we examined single-base resolution methylomes of Populus under control and drought stress conditions using high-throughput bisulfite sequencing for the first time. Our data showed methylation levels of methylated cytosines, upstream 2 kp, downstream 2kb, and repeatitive sequences significantly increased after drought treatment in Populus. Interestingly, methylation in 100 bp upstream of the transcriptional start site (TSS) repressed gene expression, while methylations in 100-2000 bp upstream of TSS and within the gene body were positively associated with gene expression. Integrated with the transcriptomic data, we found that all cis-splicing genes were non-methylated, suggesting that DNA methylation may not associate with cis-splicing. However, our results showed that 80% of trans-splicing genes were methylated. Moreover, we found 1156 transcription factors (TFs) with reduced methylation and expression levels and 690 TFs with increased methylation and expression levels after drought treatment. These TFs may play important roles in Populus drought stress responses through the changes of DNA methylation.

CONCLUSIONS

These findings may provide valuable new insight into our understanding of the interaction between gene expression and methylation of drought responses in Populus.


DOI: 10.1186/1471-2156-15-S1-S9
PubMed: 25080211
PubMed Central: PMC4118614


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Single-base-resolution methylomes of Populus trichocarpa reveal the association between DNA methylation and drought stress.</title>
<author>
<name sortKey="Liang, Dan" sort="Liang, Dan" uniqKey="Liang D" first="Dan" last="Liang">Dan Liang</name>
</author>
<author>
<name sortKey="Zhang, Zhoujia" sort="Zhang, Zhoujia" uniqKey="Zhang Z" first="Zhoujia" last="Zhang">Zhoujia Zhang</name>
</author>
<author>
<name sortKey="Wu, Honglong" sort="Wu, Honglong" uniqKey="Wu H" first="Honglong" last="Wu">Honglong Wu</name>
</author>
<author>
<name sortKey="Huang, Chunyu" sort="Huang, Chunyu" uniqKey="Huang C" first="Chunyu" last="Huang">Chunyu Huang</name>
</author>
<author>
<name sortKey="Shuai, Peng" sort="Shuai, Peng" uniqKey="Shuai P" first="Peng" last="Shuai">Peng Shuai</name>
</author>
<author>
<name sortKey="Ye, Chu Yu" sort="Ye, Chu Yu" uniqKey="Ye C" first="Chu-Yu" last="Ye">Chu-Yu Ye</name>
</author>
<author>
<name sortKey="Tang, Sha" sort="Tang, Sha" uniqKey="Tang S" first="Sha" last="Tang">Sha Tang</name>
</author>
<author>
<name sortKey="Wang, Yunjie" sort="Wang, Yunjie" uniqKey="Wang Y" first="Yunjie" last="Wang">Yunjie Wang</name>
</author>
<author>
<name sortKey="Yang, Ling" sort="Yang, Ling" uniqKey="Yang L" first="Ling" last="Yang">Ling Yang</name>
</author>
<author>
<name sortKey="Wang, Jun" sort="Wang, Jun" uniqKey="Wang J" first="Jun" last="Wang">Jun Wang</name>
</author>
<author>
<name sortKey="Yin, Weilun" sort="Yin, Weilun" uniqKey="Yin W" first="Weilun" last="Yin">Weilun Yin</name>
</author>
<author>
<name sortKey="Xia, Xinli" sort="Xia, Xinli" uniqKey="Xia X" first="Xinli" last="Xia">Xinli Xia</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25080211</idno>
<idno type="pmid">25080211</idno>
<idno type="doi">10.1186/1471-2156-15-S1-S9</idno>
<idno type="pmc">PMC4118614</idno>
<idno type="wicri:Area/Main/Corpus">002059</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002059</idno>
<idno type="wicri:Area/Main/Curation">002059</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002059</idno>
<idno type="wicri:Area/Main/Exploration">002059</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Single-base-resolution methylomes of Populus trichocarpa reveal the association between DNA methylation and drought stress.</title>
<author>
<name sortKey="Liang, Dan" sort="Liang, Dan" uniqKey="Liang D" first="Dan" last="Liang">Dan Liang</name>
</author>
<author>
<name sortKey="Zhang, Zhoujia" sort="Zhang, Zhoujia" uniqKey="Zhang Z" first="Zhoujia" last="Zhang">Zhoujia Zhang</name>
</author>
<author>
<name sortKey="Wu, Honglong" sort="Wu, Honglong" uniqKey="Wu H" first="Honglong" last="Wu">Honglong Wu</name>
</author>
<author>
<name sortKey="Huang, Chunyu" sort="Huang, Chunyu" uniqKey="Huang C" first="Chunyu" last="Huang">Chunyu Huang</name>
</author>
<author>
<name sortKey="Shuai, Peng" sort="Shuai, Peng" uniqKey="Shuai P" first="Peng" last="Shuai">Peng Shuai</name>
</author>
<author>
<name sortKey="Ye, Chu Yu" sort="Ye, Chu Yu" uniqKey="Ye C" first="Chu-Yu" last="Ye">Chu-Yu Ye</name>
</author>
<author>
<name sortKey="Tang, Sha" sort="Tang, Sha" uniqKey="Tang S" first="Sha" last="Tang">Sha Tang</name>
</author>
<author>
<name sortKey="Wang, Yunjie" sort="Wang, Yunjie" uniqKey="Wang Y" first="Yunjie" last="Wang">Yunjie Wang</name>
</author>
<author>
<name sortKey="Yang, Ling" sort="Yang, Ling" uniqKey="Yang L" first="Ling" last="Yang">Ling Yang</name>
</author>
<author>
<name sortKey="Wang, Jun" sort="Wang, Jun" uniqKey="Wang J" first="Jun" last="Wang">Jun Wang</name>
</author>
<author>
<name sortKey="Yin, Weilun" sort="Yin, Weilun" uniqKey="Yin W" first="Weilun" last="Yin">Weilun Yin</name>
</author>
<author>
<name sortKey="Xia, Xinli" sort="Xia, Xinli" uniqKey="Xia X" first="Xinli" last="Xia">Xinli Xia</name>
</author>
</analytic>
<series>
<title level="j">BMC genetics</title>
<idno type="eISSN">1471-2156</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>DNA Methylation (MeSH)</term>
<term>DNA, Plant (genetics)</term>
<term>Droughts (MeSH)</term>
<term>Epigenesis, Genetic (MeSH)</term>
<term>Populus (genetics)</term>
<term>RNA Splicing (MeSH)</term>
<term>Stress, Physiological (genetics)</term>
<term>Transcription Factors (genetics)</term>
<term>Transcriptome (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN des plantes (génétique)</term>
<term>Facteurs de transcription (génétique)</term>
<term>Méthylation de l'ADN (MeSH)</term>
<term>Populus (génétique)</term>
<term>Stress physiologique (génétique)</term>
<term>Sécheresses (MeSH)</term>
<term>Transcriptome (MeSH)</term>
<term>Épigenèse génétique (MeSH)</term>
<term>Épissage des ARN (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Plant</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN des plantes</term>
<term>Facteurs de transcription</term>
<term>Populus</term>
<term>Stress physiologique</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>DNA Methylation</term>
<term>Droughts</term>
<term>Epigenesis, Genetic</term>
<term>RNA Splicing</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Méthylation de l'ADN</term>
<term>Sécheresses</term>
<term>Transcriptome</term>
<term>Épigenèse génétique</term>
<term>Épissage des ARN</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>DNA methylation is an important biological form of epigenetic modification, playing key roles in plant development and environmental responses.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>In this study, we examined single-base resolution methylomes of Populus under control and drought stress conditions using high-throughput bisulfite sequencing for the first time. Our data showed methylation levels of methylated cytosines, upstream 2 kp, downstream 2kb, and repeatitive sequences significantly increased after drought treatment in Populus. Interestingly, methylation in 100 bp upstream of the transcriptional start site (TSS) repressed gene expression, while methylations in 100-2000 bp upstream of TSS and within the gene body were positively associated with gene expression. Integrated with the transcriptomic data, we found that all cis-splicing genes were non-methylated, suggesting that DNA methylation may not associate with cis-splicing. However, our results showed that 80% of trans-splicing genes were methylated. Moreover, we found 1156 transcription factors (TFs) with reduced methylation and expression levels and 690 TFs with increased methylation and expression levels after drought treatment. These TFs may play important roles in Populus drought stress responses through the changes of DNA methylation.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>These findings may provide valuable new insight into our understanding of the interaction between gene expression and methylation of drought responses in Populus.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25080211</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>10</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2156</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>15 Suppl 1</Volume>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>BMC genetics</Title>
<ISOAbbreviation>BMC Genet</ISOAbbreviation>
</Journal>
<ArticleTitle>Single-base-resolution methylomes of Populus trichocarpa reveal the association between DNA methylation and drought stress.</ArticleTitle>
<Pagination>
<MedlinePgn>S9</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2156-15-S1-S9</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">DNA methylation is an important biological form of epigenetic modification, playing key roles in plant development and environmental responses.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">In this study, we examined single-base resolution methylomes of Populus under control and drought stress conditions using high-throughput bisulfite sequencing for the first time. Our data showed methylation levels of methylated cytosines, upstream 2 kp, downstream 2kb, and repeatitive sequences significantly increased after drought treatment in Populus. Interestingly, methylation in 100 bp upstream of the transcriptional start site (TSS) repressed gene expression, while methylations in 100-2000 bp upstream of TSS and within the gene body were positively associated with gene expression. Integrated with the transcriptomic data, we found that all cis-splicing genes were non-methylated, suggesting that DNA methylation may not associate with cis-splicing. However, our results showed that 80% of trans-splicing genes were methylated. Moreover, we found 1156 transcription factors (TFs) with reduced methylation and expression levels and 690 TFs with increased methylation and expression levels after drought treatment. These TFs may play important roles in Populus drought stress responses through the changes of DNA methylation.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">These findings may provide valuable new insight into our understanding of the interaction between gene expression and methylation of drought responses in Populus.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Liang</LastName>
<ForeName>Dan</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Zhoujia</ForeName>
<Initials>Z</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Honglong</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Chunyu</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Shuai</LastName>
<ForeName>Peng</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ye</LastName>
<ForeName>Chu-Yu</ForeName>
<Initials>CY</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tang</LastName>
<ForeName>Sha</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Yunjie</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Ling</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Jun</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yin</LastName>
<ForeName>Weilun</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Xia</LastName>
<ForeName>Xinli</ForeName>
<Initials>X</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>06</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genet</MedlineTA>
<NlmUniqueID>100966978</NlmUniqueID>
<ISSNLinking>1471-2156</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018744">DNA, Plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019175" MajorTopicYN="Y">DNA Methylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018744" MajorTopicYN="N">DNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055864" MajorTopicYN="Y">Droughts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044127" MajorTopicYN="N">Epigenesis, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012326" MajorTopicYN="N">RNA Splicing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="N">Transcriptome</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>8</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>8</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>10</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25080211</ArticleId>
<ArticleId IdType="pii">1471-2156-15-S1-S9</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2156-15-S1-S9</ArticleId>
<ArticleId IdType="pmc">PMC4118614</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>BMC Genomics. 2012;13:27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22251412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jul;38(Web Server issue):W64-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20435677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Jul 15;466(7304):388-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20512117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Mar;62(6):1951-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21193578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Nov 3;479(7371):74-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21964334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2011 Nov;4(6):996-1013</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21705581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(2):e55772</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23418457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(4):e59878</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23577076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013;14:233</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23570526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2013 Dec;83(6):539-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23857471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2014 Mar;16(2):419-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23889779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Aug 10;293(5532):1070-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11498574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2002 May;22(9):3157-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11940673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2002 Jun;89 Spec No:801-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12102505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Dec 10;99 Suppl 4:16491-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12151602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2003 Mar 4;13(5):421-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12620192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1988 Nov;2(11):1364-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2463208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 Sep 1;17(17):4905-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9724627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2006 Jan;16(1):30-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16344562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Cell. 2006 Feb;98(2):135-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16417469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2006 Jan 3;365:104-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16376497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Sep 22;126(6):1189-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16949657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Symp Ser (Oxf). 2006;(50):69-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17150821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Feb;143(2):876-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17158588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Mar;49(6):1091-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17319848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2007;58:435-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17280524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Feb;20(2):259-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18263775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2008 May;9(5):411-2; author reply 414</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18421312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 May 2;133(3):523-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18423832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2008 Jun;31(6):850-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18284585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Nov;18(11):1752-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18682548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Apr;21(4):1053-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19376930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Dec;32(12):1724-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19671097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Nov 19;462(7271):315-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19829295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jan;38(Database issue):D822-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19858103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2010 Jan;20(1):45-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19858364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2010 May;20(5):646-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20305017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2010 May;28(5):516-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20436463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 May 14;328(5980):916-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20395474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2012;13:300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22747568</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Huang, Chunyu" sort="Huang, Chunyu" uniqKey="Huang C" first="Chunyu" last="Huang">Chunyu Huang</name>
<name sortKey="Liang, Dan" sort="Liang, Dan" uniqKey="Liang D" first="Dan" last="Liang">Dan Liang</name>
<name sortKey="Shuai, Peng" sort="Shuai, Peng" uniqKey="Shuai P" first="Peng" last="Shuai">Peng Shuai</name>
<name sortKey="Tang, Sha" sort="Tang, Sha" uniqKey="Tang S" first="Sha" last="Tang">Sha Tang</name>
<name sortKey="Wang, Jun" sort="Wang, Jun" uniqKey="Wang J" first="Jun" last="Wang">Jun Wang</name>
<name sortKey="Wang, Yunjie" sort="Wang, Yunjie" uniqKey="Wang Y" first="Yunjie" last="Wang">Yunjie Wang</name>
<name sortKey="Wu, Honglong" sort="Wu, Honglong" uniqKey="Wu H" first="Honglong" last="Wu">Honglong Wu</name>
<name sortKey="Xia, Xinli" sort="Xia, Xinli" uniqKey="Xia X" first="Xinli" last="Xia">Xinli Xia</name>
<name sortKey="Yang, Ling" sort="Yang, Ling" uniqKey="Yang L" first="Ling" last="Yang">Ling Yang</name>
<name sortKey="Ye, Chu Yu" sort="Ye, Chu Yu" uniqKey="Ye C" first="Chu-Yu" last="Ye">Chu-Yu Ye</name>
<name sortKey="Yin, Weilun" sort="Yin, Weilun" uniqKey="Yin W" first="Weilun" last="Yin">Weilun Yin</name>
<name sortKey="Zhang, Zhoujia" sort="Zhang, Zhoujia" uniqKey="Zhang Z" first="Zhoujia" last="Zhang">Zhoujia Zhang</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002051 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002051 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25080211
   |texte=   Single-base-resolution methylomes of Populus trichocarpa reveal the association between DNA methylation and drought stress.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25080211" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020